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Some new developments of explicit algebraic Reynolds stress turbulence models
(EARSM) are presented. The new developments include a new near-wall treatment
ensuring realizability for the individual stress components, a formulation for com-
pressible flows, and a suggestion for a possible approximation of diffusion terms in
the anisotropy transport equation. Recent developments in this area are assessed and
collected into a model for both incompressible and compressible three-dimensional
wall-bounded turbulent flows. This model represents a solution of the implicit ARSM
equations, where the production to dissipation ratio is obtained as a solution to a
nonlinear algebraic relation. Three-dimensionality is fully accounted for in the mean
flow description of the stress anisotropy. The resulting EARSM has been found to
be well suited to integration to the wall and all individual Reynolds stresses can be
well predicted by introducing wall damping functions derived from the van Driest
damping function. The platform for the model consists of the transport equations for
the kinetic energy and an auxiliary quantity. The proposed model can be used with
any such platform, and examples are shown for two different choices of the auxiliary
quantity.

1. Introduction
Standard two-equation models are still dominant in the context of industrial flow

computations. In flows with strong effects of streamline curvature, adverse pres-
sure gradients, flow separation or system rotation, such models fail to give accurate
predictions. Turbulence models based on the transport equations for the individual
Reynolds stresses have the natural potential for dealing with, for example, the as-
sociated complex dynamics of inter-component transfer. The Boussinesq hypothesis
may in this context be said to be replaced by transport equations for the individual
Reynolds stress anisotropies. As yet, there are non-trivial numerical aspects of flow
computations with such models in complex flow situations. This represents an active
area of research. In parallel with such efforts there has been a considerable renewed
interest in various forms of algebraic approximations of the anisotropy transport
equations. In the present work some new developments are presented for explicit
formulations of algebraic Reynolds stress models. The motivation for this work is the
general need for improvements in the prediction of complicated turbulent flows using
the platform of existing CFD prediction tools based on the two-equation modelling
level.
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1.1. Algebraic Reynolds stress models

The classical algebraic Reynolds stress model (ARSM), Rodi (1972, 1976), was
developed from the modelled Reynolds stress transport (RST) equation by assuming
that the advection minus the diffusion of the individual Reynolds stresses can be
expressed as the product of the corresponding quantity for the kinetic energy, K , and
the individual Reynolds stresses normalized by K . This results in an implicit relation
between the stress components and the mean velocity gradient field that replaces the
Boussinesq hypothesis. Since the algebraic Reynolds stress model is determined from
the modelled Reynolds stress transport equation no additional model constants are
needed and the basic behaviour and experiences of the particular RST model will
be inherited. The linearity of the Boussinesq hypothesis excludes any dependence on
the rotational (antisymmetric) part of the mean velocity gradient tensor. An ARSM
approach here represents a systematic method of constructing a nonlinear stress
relationship that includes effects of the rotational part of the mean velocity gradient
tensor. Despite this definite improvement one should, however, keep in mind that
the ARSM can never represent the transport effects as well as a full RST model,
which always should be expected to give a more correct description of the turbulence.
However, the RST models also have limitations in predicting turbulence for general
and complicated flows, especially in describing the effects of rotation.

The traditional ARSM idea is equivalent to neglecting advection and diffusion terms
in the exact transport equation for the Reynolds stress anisotropy, aij , defined as aij ≡
uiuj/K − 2δij/3. The advection term is indeed exactly zero for all stationary parallel
mean flows, such as fully developed channel and pipe flows. For inhomogeneous
flows the assumption of negligible effects of diffusion in the aij equation can cause
problems, particularly in regions where the production term is small or where the
inhomogeneity is strong. However, the Rodi ARSM assumption incorporates in a
natural way not only effects of rotation but also effects of streamline curvature and
three-dimensionality of the flow and has been found to be a reasonable approximation
of the full differential RST equations in a number of flow situations, in many respects
superior to the eddy-viscosity hypothesis.

To illustrate the natural way in which system rotation, and rotational effects in
general, enter in this type of formalism we may take as the starting point the
transport equation for the Reynolds stress anisotropy tensor in a rotating Cartesian
coordinate system (the formulation of algebraic Reynolds stress models for rotating
and curvilinear coordinate systems has recently been studied in some detail by Sjögren
1997)

K
Daij
Dt
−
(
∂Tijl

∂xl
− uiuj

K

∂T
(K)
l

∂xl

)
= −uiuj

K
(P − ε) +Pij − εij +Πij + εC

(a)
ij , (1.1)

where −Tijl and −T (K)
l are the fluxes (turbulent and molecular) of the Reynolds

stress and turbulent kinetic energy, respectively. The dissipation rate tensor, εij , and
the pressure strain, Πij , need to be modelled whereas the production terms, Pij

and P = Pii/2, and the Coriolis term, C (a)
ij , do not need any modelling since they

are explicit in the Reynolds stress tensor. In a non-rotating coordinate system the
Reynolds stress production term is normally written as

Pij = −uiukUj,k − ujukUi,k, (1.2)

where Ui,j denotes the mean velocity gradient tensor. In a rotating system it is
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convenient to split the mean velocity gradient tensor into a mean strain and a mean
rotation tensor. We will here let Sij and Ωij denote these tensors normalized with the
turbulent timescale, τ ≡ K/ε,

Sij =
τ

2

(
Ui,j +Uj,i

)
, Ωij =

τ

2

(
Ui,j −Uj,i

)
. (1.3)

A consistent formulation of (1.1), valid also in the rotating system, can then be
obtained by replacing the mean rotation tensor by the absolute rotation tensor

Ω∗ij = Ωij + Ωs
ij , (1.4)

where

Ωs
ij = τεjikω

s
k (1.5)

and ωs
k is the constant angular rotation rate vector of the system. This procedure

illustrates the origin of the two parts of what normally is referred to as the Coriolis
term in the aij equation. In this way the first part is included in the production term,
that now (normalized with ε) can be expressed as

Pij

ε
= − 4

3
Sij − (aikSkj + Sikakj

)
+ aikΩ

∗
kj − Ω∗ikakj . (1.6)

The second part of the Coriolis term arises from the transformation of the advection
term. This part (normalized by ε) is denoted by C (a)

ij in (1.1), and can be expressed as

C
(a)
ij = aikΩ

s
kj − Ωs

ikakj . (1.7)

The ARSM assumption results in the following implicit algebraic equation for aij:

uiuj

K
(P − ε) = Pij − εij +Πij + εC

(a)
ij , (1.8)

the structure of which, of course, depends on the choice of the models for εij and
Πij . For the present modelling purpose we choose an isotropic assumption for the
dissipation rate tensor,

εij = 2
3
εδij , (1.9)

and the Rotta model, Rotta (1951), for the slow pressure strain

Π
(s)
ij = −c1εaij . (1.10)

For the rapid pressure–strain rate we choose the general linear model of Launder,
Reece & Rodi (1975), which for a non-rotating system normally is written as

Π
(r)
ij = −c2 + 8

11

(Pij − 2
3
Pδij)− 30c2 − 2

55
K
(
Ui,j +Uj,i

)− 8c2 − 2

11

(
Dij − 2

3
Pδij) ,

(1.11)

where Dij = −uiukUk,j − ujukUk,i.
A simple way of obtaining a consistent, frame-independent formulation of the rapid

pressure–strain rate model is to apply the same methodology as for the production
term. This gives

Π
(r)
ij

ε
= 4

5
Sij +

9c2 + 6

11

(
aikSkj + Sikakj − 2

3
akmSmkδij

)
+
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11

(
aikΩ

∗
kj − Ω∗ikakj

)
.

(1.12)
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From (1.8) we then obtain the implicit algebraic equation for the Reynolds stress
anisotropy tensor in the form(
c1 − 1 +

P
ε

)
a = − 8

15
S +

7c2 + 1

11
(aΩR −ΩRa)− 5− 9c2

11

(
aS + Sa− 2

3
tr{aS}I) .

(1.13)
In equation (1.13) a, S and Ω denote second-rank tensors, and I is the identity matrix.
The inner product of two matrices is defined as (SS)ij ≡

(
S2
)
ij
≡ SikSkj and tr{ }

denotes the trace. This notation will be kept through this paper. One should note
that (1.13) represents a nonlinear relation since P/ε ≡ −tr{aS}.

It is interesting to note that the ‘effective’ mean rotation rate tensor, ΩR
ij , depends

on the choice of model:

ΩR
ij = Ω∗ij +

11

7c2 + 1
Ωs
ij = Ωij +

7c2 + 12

7c2 + 1
Ωs
ij . (1.14)

The ARSM approximation of the aij transport equation with this approach is then
equivalent to neglecting the advective term (and diffusion) in the chosen rotating
coordinate system. Hence, the adequacy of the ARSM approach is coupled to the
choice of a coordinate system where the omission of advection terms in the aij
equation can be justified. The choice of coordinate system is not at all trivial in
strongly curved flows and the coordinate direction is not in general aligned with
the flow direction. There are, however, methods to construct ARSMs that generally
neglect only the advection term in the streamline direction (see e.g. Girimaji 1997 and
Sjögren 1997).

As is seen from equation (1.13) the treatment of system rotation is quite straight-
forward. The superscript R on the mean rotation rate tensor will be dropped in the
following.

The turbulent kinetic energy, K ≡ uiui/2, and its dissipation, ε, are determined from
transport equations

DK

Dt
+
∂T

(K)
l

∂xl
= P − ε, (1.15)

Dε

Dt
+
∂T

(ε)
l

∂xl
= (Cε1P − Cε2fεε) ε

K
. (1.16)

There is no direct influence of system rotation on these equations. A substantial
improvement over the eddy-viscosity model equations is that the production term,
P, does not need to be modelled. The transport terms, T (K)

l and T
(ε)
l , are usually

modelled using gradient diffusion with the diffusivity coefficient expressed with the
aid of the eddy viscosity, but here an improvement can also be achieved by using
the knowledge of the complete Reynolds stress tensor. The gradient-diffusion model
proposed by Daly & Harlow (1970) applied to the turbulent kinetic energy and its
dissipation gives

T
(K)
l = −c′s Kε ulum

∂K

∂xm
, T

(ε)
l = −cεK

ε
ulum

∂ε

∂xm
. (1.17)

Launder et al. (1975) recommend c′s = 0.25 and cε = 0.15.

1.2. Explicit algebraic Reynolds stress models

The implicit relation for a in the ARSM equations has been found to be numerically
and computationally cumbersome since there is no diffusion or damping present in
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the equation system. In many applications the computational effort has been found
to be excessively large and the benefits of using ARSM instead of the full Reynolds
stress model are then lost. An explicit algebraic Reynolds stress model, EARSM,
where the Reynolds stresses are explicitly related to the mean flow field is much
more numerically robust and has been found to have almost a negligible effect on the
computational effort as compared to a K–ε model.

The most general form for a in terms of S and Ω consists of ten tensorially
independent groups to which all higher-order tensor combinations can be reduced
with the aid of the Caley–Hamilton theorem:

a = β1S + β2

(
S2 − 1

3
IIS I

)
+ β3

(
Ω2 − 1

3
IIΩ I

)
+ β4 (SΩ−ΩS)

+β5

(
S2Ω−ΩS2

)
+ β6

(
SΩ2 +Ω2S − 2

3
IV I

)
+ β7

(
S2Ω2 +Ω2S2 − 2

3
V I
)

+β8

(
SΩS2 − S2ΩS

)
+ β9

(
ΩSΩ2 −Ω2SΩ

)
+ β10

(
ΩS2Ω2 −Ω2S2Ω

)
. (1.18)

The β-coefficients may be functions of the five independent invariants of S and Ω,
which can be written as

IIS = tr{S2}, IIΩ = tr{Ω2}, IIIS = tr{S3}, IV = tr{SΩ2}, V = tr{S2Ω2}.
(1.19)

Other scalar parameters may also be involved.
The independence of the ten groups and the completeness of expression (1.18) is

further discussed in Appendix B. Shih & Lumley (1993) include also an eleventh,
sixth-order group. The exact expression for such a group in terms of the lower-order
groups is also given in Appendix B. In two-dimensional mean flows, there are only
three independent tensor groups, i.e. the β1,2,4 groups, and two independent invariants,
IIS and IIΩ .

Formulation of expression (1.18) in terms of S and Ω follows Pope (1975) and
gives a much more compact form than by using the mean velocity gradients directly.
It is also more cumbersome to compute matrix products involving Ui,j due to the
full matrix (eight independent elements) while Sij and Ωij contain only five and three
independent elements respectively. Also, the introduction of a rotating coordinate
system is simplified here.

The main problem in obtaining an explicit relation for the anisotropy is that of
determining the β-coefficients. A possibility would be to calibrate these from some
chosen set of ‘basic flows’. Shih, Zhu & Lumley (1992, 1995) partially adopted this
approach combined with conditions related to realizability and restraints on correct
behaviour in rapid distortion limits. A more traditional approach is to derive an
explicit form from an implicit a-relation based on established models for the terms
in the Reynolds stress (or its anisotropy) tensor transport equation, equivalent to
equation (1.13). Pope (1975) was the first to propose using the ten tensor groups to
form a consistent explicit relation. He also derived a relation for two-dimensional
mean flows leaving the production to dissipation ratio (P/ε) implicit. This approach
was later extended and solved for three-dimensional mean flows by Taulbee (1992)
for the special case of c2 = 5

9
and by Gatski & Speziale (1993) for a general linear

pressure–strain model.
The nonlinearity of equation (1.13) (P/ε ≡ −tr{aS}) forms a major obstacle for

this approach and the studies published so far have circumvented the problem by
letting P/ε = −tr{aS} be implicit during the solution of (1.13), adopted by Pope
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(1975) and Taulbee (1992) or the approach used by Gatski & Speziale (1993) where
they used the asymptotic equilibrium value for P/ε as a universal constant.

The nonlinear system of equations is, however, conveniently solved in the form
of a linear system of (five) equations complemented by a nonlinear scalar equation
for P/ε. For two-dimensional mean flows, Johansson & Wallin (1996) and Girimaji
(1996a, b) have independently shown that this equation has a closed and fully explicit
solution that can be expressed in a compact form. In the present work it is shown that
good approximations are easily found for general three-dimensional mean flows. The
complexity of the solution is substantially reduced by setting the coefficient c2 = 5

9
(see e.g. Taulbee 1992).

The removal of the need for ad hoc relations for P/ε represents a substantial
improvement for this type of modelling. A constant P/ε gives wrong asymptotic
behaviour for large strain rates, also noticed by Speziale & Xu (1996), while the fully
consistent solution of the nonlinear equation system automatically fulfils the correct
asymptotic behaviour. Also, in the very near-wall region, the correct asymptotic be-
haviour implies that all individual Reynolds stresses can be satisfactorily represented
simply by introducing a van Driest damping function.

A straightforward extension to compressible flow is derived in which the mean
density variations are taken into account. This model is applied to a complex flow
situation with a shock–boundary layer interaction. An extension of the model to
account in a simple way for the neglected turbulent transport of the anisotropies is
also considered.

2. Formulation of an explicit algebraic model (EARSM)
The value of c2 in the rapid pressure–strain model was originally suggested to be

0.4 by Launder et al. (1975), but more recent studies have suggested a higher value
close to 5

9
, see e.g. Lumley (1978) and Shabbir & Shih (1992). This means that the

last term in equation (1.13) is of quite small influence, also noticed by Taulbee (1992).
Setting c2 = 5

9
one obtains the simplified but still implicit equation(

c1 − 1 +
P
ε

)
a = − 8

15
S + 4

9
(aΩ−Ωa) . (2.1)

System rotation can easily be accounted for by substituting Ω with ΩR = Ω+(13/4)Ωs

according to (1.14) where Ωs is given by (1.5) (see § 1). It will be shown later that the
removal of the last term in equation (1.13) gives a substantial simplification of the
solution, especially in three-dimensional mean flow. The Rotta coefficient, c1, is here
set to 1.8.

The simplified but implicit algebraic Reynolds stress equation (2.1) is rewritten in
the following form:

Na = − 6
5
S + (aΩ−Ωa) , (2.2)

where N is closely related to the production to dissipation ratio (P/ε = −tr{aS}),
N = c′1 + 9

4
P/ε (2.3)

and

c′1 = 9
4

(c1 − 1) . (2.4)

The procedure to solve this equation is the following: First, the general form for the
anisotropy, equation (1.18), is inserted into the simplified ARSM equation (2.2) where
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N is not yet determined. The resulting linear equation system for the β-coefficients
is then solved by using the fact that higher-order tensor groups can be reduced with
the aid of the Cayley–Hamilton theorem where the ten groups in the general form
(1.18) form a complete basis. The β-coefficients are now functions of the production
to dissipation ratio, P/ε, or N. The final step is to formulate and solve the nonlinear
scalar equation for N or P/ε.

2.1. Solution of the simplified ARSM for two-dimensional mean flows

For two-dimensional mean flows the solution is reduced to only two non-zero coeffi-
cients, which can be expressed as

β1 = −6

5

N

N2 − 2IIΩ
, β4 = −6

5

1

N2 − 2IIΩ
. (2.5)

It is clearly seen that the denominator, N2 − 2IIΩ , cannot become singular since
IIΩ is always negative. It will be shown later that an explicit formulation of any
quasi-linear ARSM is non-singular if the corresponding nonlinear equation for the
production to dissipation ratio is solved, as also noticed by Girimaji (1996a, b).

The nonlinear equation for N in two-dimensional mean flow can be derived by
introducing the solution of a for two-dimensional mean flow in the definition of N.
The resulting equation is cubic

N3 − c′1N2 − ( 27
10
IIS + 2IIΩ

)
N + 2c′1IIΩ = 0, (2.6)

and can be solved in a closed form with the solution for the positive root being

N =


c′1
3

+ (P1 +
√
P2)

1/3 + sign(P1 −
√
P2) | P1 −

√
P2 |1/3, P2 > 0

c′1
3

+ 2
(
P 2

1 − P2

)1/6
cos

(
1

3
arccos

(
P1√

P 2
1 − P2

))
, P2 < 0

(2.7)

where the arccos function should return an angle between 0 and π and

P1 = ( 1
27
c′21 + 9

20
IIS − 2

3
IIΩ)c′1, P2 = P 2

1 − ( 1
9
c′21 + 9

10
IIS + 2

3
IIΩ)3. (2.8)

It can easily be shown that N remains real and positive for all possible values of IIS
and IIΩ . The production to dissipation ratio may then be found from (2.3).

The above solution for two-dimensional flows was also given in Johansson & Wallin
(1996) and is very similar in structure to that of Girimaji (1996a, b) who also derives
an explicit solution for P/ε although for a somewhat more general set of models that
yields β2 6= 0 (cf. the solutions in Appendix C).

2.1.1. Illustration of the behaviour of the proposed model

Figures 1 and 2 illustrate the behaviour of the solution for P/ε. We note that
it is zero for all cases with σ = 0, i.e. irrespective of the value of ω, where σ and
ω are defined as σ ≡ √IIS/2 and ω ≡ √−IIΩ/2 and that the P/ε ratio decreases
monotonically with increasing influence of rotation. For all parallel shear flows σ = ω.

Homogeneous shear flow is a classical corner stone case for calibration of turbulence
models. Tavoularis & Corrsin (1981) have experimentally shown that the asymptotic
value of SK/ε ≈ 6 corresponding to σ = ω = 3. In the experiments the production
to dissipation ratio was found to be approximately 1.8, marked as a circle in figure
2. The present model exactly replicates that result. Furthermore, in the log-layer of
a boundary layer we know that the production balances the dissipation rate, P = ε,
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Figure 1. Isolines of the production to dissipation ratio for the current model.
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Figure 2. Production to dissipation ratio versus strain rate σ for different rotation ratios ω/σ. The
current model ( ) compared to an eddy-viscosity model ( ).

which is obtained with the proposed model when the strain rate σ = 1.69. This is
within the range of σ values found in the log-layer of the DNS data for channel flow
(Kim 1989). This is also consistent with an effective Cµ = 0.09 which gives σ = 1.67,
also marked as a circle in the figure.

The anisotropies for the two cases are compared in tables 1 and 2. Most important
is to correctly predict the a12 anisotropy since this is the only component of the
anisotropy tensor that contributes to the turbulent production in parallel flows. The
a22 component is also important since this is the only term that contributes to the
turbulent diffusion term. The table shows that a12 and a22 are well predicted for the
two different cases. The a11 and a33 components are, however, not as well predicted
due to the simplification of setting c2 = 5

9
since this implies that a33 = 0. The

inclusion of c2 6= 5
9

will, however, not be sufficient if one wishes to improve the
prediction of the anisotropies, since the particular choice of c1 and c2 used here is
the only combination that predicts both a12 and a22 correctly in these two different
cases. The good behaviour of the model for these two very different cases justifies the
particular choice of model constants, c1 and c2, in the pressure–strain model.
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a12 a11 a22 a33 σ

DNS −0.29 0.34 −0.26 −0.08 1.65
Current model −0.30 0.25 −0.25 0.00 1.69

Table 1. The computed anisotropy in the log-layer using the current model assuming balance
between turbulence production and dissipation compared to channel DNS data (Kim 1989).

a12 a11 a22 a33 P/ε
Experiment −0.30 0.40 −0.28 −0.12 1.8
Current model −0.30 0.31 −0.31 0.00 1.8

Table 2. The anisotropy in asymptotic homogeneous shear flow using the current model with
σ = 3.0 compared to measurements by Tavoularis & Corrsin (1981).

25

20

15

0 2 8 10

K

T
4 6

10

5

Figure 3. Time evolution of the turbulent kinetic energy in rapidly sheared homogeneous flow,
SK/ε = 50. Eddy-viscosity model ( ), the proposed EARSM ( ) and the Gatski & Speziale
(1993) EARSM ( ) compared with RDT (•).

A better tuning of the different anisotropies could possibly be achieved by using
the most general quasi-linear pressure–strain model, where the coefficients may be
functions of the production to dissipation ratio. This will be further discussed in § 2.3.

The asymptotic behaviour for large strain rates in parallel flow can be investigated
by letting σ = ω → ∞. The production to dissipation ratio then becomes P/ε ∼ σ
and β1 ∼ 1/σ. This asymptotic behaviour for the β1-coefficient (equivalent to −2Cµ)
is of particular interest since it ensures good model behaviour in the very near-wall
buffer- and viscous sub-layers as will be shown later. The asymptotic behaviour is
also consistent with the asymptotic characteristics of homogeneous shear flow. With
an erroneous model assumption of a constant production to dissipation ratio, P/ε,
the wrong asymptote, β1 ∼ 1/σ2, is obtained, as also noticed by Speziale & Xu (1996),
while the solution of the nonlinear equation for P/ε automatically gives the correct
asymptotic behaviour.

To illustrate the behaviour for large shear rates the model is tested in homogeneous
shear flow at high initial shear rate (SK/ε = 50), see figure 3. This flow is a case
where one should expect differences between the algebraic approach and the full
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Figure 4. Predicted a12 anisotropy versus strain rate σ for parallel flow. The current model ( )
compared to the eddy-viscosity model ( ) and the Menter (1993) SST model ( ).

differential model due to the fact that the anisotropies undergo a temporal evolution
(∂aij/∂t 6= 0) in the development towards an asymptotic state. Moreover, the Launder
et al. (1975) model gives quite poor predictions of this case when used in a differential
form. The very good predictions of the present EARSM can thus be regarded as a bit
fortuitous. Nevertheless, the self-consistent approach gives a model with the correct
asymptotic behaviour, which is a pre-requisite for reasonable predictions in the limit
of high shear. It is important to make clear that the proposed model is not intended
for these extreme high shear rates and the normal stress components are not as well
predicted as the turbulent kinetic energy. It is, however, an important step towards a
more general engineering model that the model is able to give reasonable results in
extreme flow cases also.

In flows with an adverse pressure gradient, the production to dissipation ratio is
greater than 1 and eddy-viscosity models with constant Cµ overestimate the turbulent
viscosity or the a12 anisotropy. Bradshaw’s assumption, which is adopted by Menter
(1993) in the shear stress transport (SST) model, forces the a12 anisotropy to be
constant for P/ε ratios greater than unity, which gives β1 ∼ 1/σ. This is fulfilled in
the limit of large strain rates by the proposed model, which also gives a nearly constant
a12 anisotropy in boundary layers with small pressure gradients. This can be seen in
figure 4 where the a12 anisotropy versus the strain rate is shown for parallel flows.
The a12 anisotropy computed from the proposed model is nearly constant here for a
wide range of strain rates including both the log-layer and asymptotic homogeneous
shear. The eddy-viscosity assumption gives a12 = −2Cµσ and has a totally different
behaviour, shown in the figure, and becomes physically unrealizable for large strain
rates, σ > 5.56. This is, however, avoided by the SST limitation on the anisotropy
which nearly coincides with the proposed model for strain rates larger than those
in the log-layer. This feature of the proposed model ensures an improved behaviour
in boundary layers with pressure gradients as compared to standard eddy-viscosity
models.

Since equation (1.18) represents the general form of the anisotropy, different explicit
algebraic Reynolds stress models can be compared by studying the behaviour of the
β-coefficients. In two-dimensional mean flows the β-coefficients can be illustrated as
iso-curves in the (σ, ω)-plane. In figure 5 the β1-coefficient (equivalent to −2Cµ) is
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Figure 5. The behaviour of the β1-coefficient in the (σ, ω)-plane for: (a) the implicit ARSM and
the present EARSM, (b) Taulbee (1992), (c) Gatski & Speziale (1993) and (d) Shih et al. (1992).

shown for the Taulbee (1992), Gatski & Speziale (1993) and Shih et al. (1992) models.
There are substantial differences between the different models for the β1-coefficient
and a similar behaviour can also be seen for the other coefficients. Figure 5(a) is very
similar to the results of Pope (1975) although the coefficients in the pressure–strain
model were somewhat different.

One should of course bear in mind that the underlying approaches are chosen
differently in the different models. This only partly explains the different behaviours
though. The Taulbee (1992) model could, however, be directly compared to the
implicit ARSM since the basic approach is the Launder et al. (1975) model with
similar choices of the model coefficients. The classical ARSM assumption is, however,
not asymptotically correct for small strain rates and Taulbee thus makes a different
approximation in that limit. That difference is clearly seen in the figure. The approx-
imation imposed by Taulbee is motivated by the neglected advection term and gives
improved predictions in developing homogeneous shear flows where the advection is
important for small times. However, the prediction of fully developed channel flow,
where the advection is zero, is also affected by the Taulbee assumption. For that
reason this approach is not adopted, even though it improves the predicted shear
stresses near the channel centre. A similar effect can be obtained by an approximate
inclusion of turbulent diffusion (of aij) effects, as will be discussed in § 5.
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The benefits of a direct, explicit solution of the production to dissipation ratio
can be further illustrated by considering rotating plane channel flow. The mean flow
is here described by U (x2) δi1 and the system rotation is taken as ωsδi3. The mean
strain rate tensor is unaffected by system rotation, implying that the effective IIS for
the calculation of P/ε is the same as for a non-rotating channel flow. The ‘effective’
second invariant of the mean rotation tensor (see equation (1.14)) becomes

IIR
Ω = τ2[− 1

2

(
U ′
)2 − 6

(
13
4

)2
(ωs)2 + 2 13

4
ωsU ′]. (2.9)

We note that, whereas the first two terms have the same sign on both sides of the
channel, the last term has an alternating sign. For moderate rotation rates the model
will, thus, predict a decrease of P/ε on the side of the channel where IIΩ is increased,
and vice versa. This is in agreement with the observed behaviour of a stabilized and
a destabilized side in rotating channel flow. Due to the quadratic term (in ωs) in the
expression for IIΩ the model will also predict a global decrease in P/ε for very large
rates of rotation, as could be expected from comparison with stability theory (see e.g.
Matsson & Alfredsson 1990).

2.2. Solution of the simplified ARSM for three-dimensional mean flow

For general three-dimensional mean flows the solution for the β-coefficients can be
written as

β1 = −N
(
2N2 − 7IIΩ

)
Q

, β3 = −12N−1IV

Q
,

β4 = −2
(
N2 − 2IIΩ

)
Q

, β6 = −6N

Q
, β9 =

6

Q
,

 (2.10)

where all the other coefficients are identically zero. The denominator

Q = 5
6

(
N2 − 2IIΩ

) (
2N2 − IIΩ) (2.11)

is also here clearly seen always to remain positive since IIΩ always is negative.
The nonlinear equation for N or the corresponding equation for P/ε is for example

obtained by introducing the above solution (2.10) for a into the definition of N. The
resulting equation is of sixth order and reads

N6 − c′1N5 − ( 27
10
IIS + 5

2
IIΩ
)
N4 + 5

2
c′1IIΩN

3

+
(
II2
Ω + 189

20
IISIIΩ − 81

5
V
)
N2 − c′1II2

ΩN − 81
5
IV 2 = 0. (2.12)

This equation reduces to the two-dimensional cubic equation by recalling that in
two-dimensional mean flows there are only two independent invariants, whereas
IIIS = IV = 0 and V = IISIIΩ/2. Equation (2.12) cannot be solved in a closed form
but the solution of N for the cubic equation (2.6) applicable in two-dimensional
mean flow, Nc, can be used as a first approximation. A further improvement of the
approximation of N is also possible by making a perturbation solution of the three-
dimensional equation. This is done by perturbing the IV and V invariants around the
two-dimensional solution, that is IV =

√
φ1 and V = IISIIΩ/2 +φ2, assuming that φ1

and φ2 are independent. Putting this into the three-dimensional equation (2.12) and
sorting in powers of φ1 and φ2 we get

N = Nc +
162

(
φ1 + φ2N

2
c

)
D

+ O(φ2
1, φ

2
2, φ1φ2) (2.13)
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where the denominator, D, is given by

D = 20N4
c

(
Nc − 1

2
c′1
)− IIΩ (10N3

c + 15c′1N
2
c

)
+ 10c′1II

2
Ω (2.14)

where (2.6) has been used to rewrite the expression for D. From (2.14) it is obvious
that D will always remain positive, since Nc > c′1 (see Appendix C).

One could also consider keeping P/ε or N implicit during the iteration procedure
to a steady-state solution and thus avoid any further approximations. It is, however,
not known how this would affect the stability of the numerical method and should
be avoided. There could also be problems associated with the existence of multiple
roots, especially for three-dimensional cases.

2.2.1. Example of a three-dimensional mean flow: rotating pipe

Fully developed turbulent flow in a circular pipe rotating around its length axis is
an interesting case, since it represents a three-dimensional flow that can be described

with only one spatial coordinate, r in a cylindrical coordinate system (r̂, θ̂, ẑ). If the
flow is laminar, the tangential velocity, Uθ , varies linearly with the radius, r, like a
solid-body rotation. In turbulent flow, on the other hand, the tangential velocity is
nearly parabolic, which cannot be described with an eddy-viscosity turbulence model.
The fully three-dimensional form of the proposed EARSM is needed to capture this
behaviour. Limited forms with only second-order terms is not sufficient, as will be
shown below.

The Navier–Stokes equation in the tangential direction can be written as

ν

(
d2Uθ

dr2
+

1

r

dUθ

dr
− Uθ

r2

)
=

d

dr
(Karθ) + 2

Karθ

r
. (2.15)

After two integrations, the tangential velocity can be expressed as

Uθ (r) = Uθ (R)
r

R
− r

ν

∫ R

r

Karθ

u
du, (2.16)

where R is the radius of the tube. The first term corresponds to the linear Uθ profile
while the second term is the correction that may give a parabolic-like profile if the
arθ anisotropy is positive.

In this particular flow the strain- and rotation-rate tensors are evaluated in an
inertial frame and read

S =
1

2
τ


0

dUθ

dr
− Uθ

r

dUz

dr
dUθ

dr
− Uθ

r
0 0

dUz

dr
0 0

 (2.17)

and

Ω =
1

2
τ


0 −dUθ

dr
− Uθ

r
−dUz

dr
dUθ

dr
+
Uθ

r
0 0

dUz

dr
0 0

 . (2.18)
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The terms that contribute to the arθ component in the general expression (1.18) are
the terms associated with the β1, β5, β6 and β10-coefficients. In the case of a linear Uθ

profile, Srθ is zero and the contribution from the β1-term vanishes. This is consistent
with the behaviour for an eddy-viscosity model.

We see from relation (2.16) that arθ should vanish rapidly for increasing Re. To
verify that the present EARSM is consistent with such a behaviour we start with
the EARSM solution for a flow that may deviate from solid-body rotation. For the
present EARSM β5 and β10 are zero, which means that here only the linear term
(β1S) and the β6-term (associated with the

(
SΩ2 +Ω2S − 2

3
IV I

)
-group) contribute

to arθ:

arθ = 1
2
β1τ

(
∂Uθ

∂r
− Uθ

r

)
− 1

4
β6τ

3

(
∂Uθ

∂r
− Uθ

r

)(
∂Uθ

∂r
+
Uθ

r

)2

− 1
4
β6τ

3 ∂Uθ

∂r

(
∂Uz

∂r

)2

.

(2.19)

For solid body rotation only the third term remains and we see that the arθ component
will vanish only if the axial mean velocity gradient ∂Uz/∂r vanishes. This gradient
does indeed vanish in the limit of infinite Reynolds number, but only slowly† with
increasing Reynolds numbers while the relation (2.16) indicates a more rapid decay
rate (arθ → 1/Re).

The β1 and β6-coefficients in (2.19) are both negative, so the term with the axial
mean velocity gradient (the last term) gives a positive contribution to arθ which
drives the azimuthal velocity Uθ(r) towards a more parabolic-like profile (where
∂Uθ/∂r > Uθ/r). The second term enhances this trend but what is interesting is that
the β1-term (the first term) has the opposite sign and has the possibility of balancing
the arθ anisotropy component depending on the exact form of the β-coefficients.

Hence, the required consistency of a rapidly vanishing arθ is indeed obtained as a
solution to the present EARSM, and is in fact associated with a non-zero deviation
from solid-body rotation for large but finite Reynolds numbers.

To clearly see this we may need to take a closer look at (2.19) by inserting the
present EARSM solutions for β1, β6. This gives

arθ ∼
(

7
Uθ

r
− ∂Uθ

∂r

)(
∂Uz

∂r

)2

−
(
∂Uθ

∂r
− Uθ

r

)[
81

4τ2

(
C1 − 1 +

P
ε

)2

+

(
∂Uθ

∂r
+
Uθ

r

)2
]

(2.20)

and balance is obtained for a parabolic-like profile. Hence, the EARSM solution
implies an anisotropy that vanishes much more rapidly than ∂Uz/∂r. As is obvious
from (2.20) we also see that in the limit of infinite Re where ∂Uz/∂r → 0 the vanishing
arθ is associated with an EARSM solution that gives a solid-body rotation.

The rotation also affects the axial velocity component, which becomes less full, i.e.
more parabolic. That effect enters mainly through the rotation dependence in the
β1-coefficient and could thus be captured also by a linear eddy-viscosity model where
the Cµ-coefficient is dependent on the rotation rate.

† The ‘two-layer hypothesis’ ⇒ (UCL −Uz)/uτ = f((R − r)/R) ⇒ (−(R/UCL)(∂Uz/∂r))
2 =

(−(uτ/UCL)f′)2 ∼ Cf where it is also well known that Cf slowly decreases with increasing Reynolds
number and that the mean velocity profile in a pipe approaches a top-hat in the infinite Re limit
(see e.g. Schlichting 1979, chap. 20).
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Figure 6. Axial velocity in rotating pipe flow for rotation ratio Z = 1. Computations with Chien
K–ε model ( ) and the current EARSM based on Chien K–ε, EARSM 0 ( ) and EARSM 1
( ), compared to experiment by Imao et al. (1996) (�).

A fully developed turbulent rotating pipe flow has been computed using the
proposed model. The Reynolds number is 20 000 based on the mean flow velocity
and tube diameter. Three different rotation ratios Z = 0, 0.5 and 1 were computed
where Z = Uθ (R) /Um, i.e. the wall angular velocity divided by the axial bulk velocity.
The results are compared to the experiment by Imao, Itoh & Harada (1996). The
turbulence models used are the Chien (1982) K–ε model and the proposed EARSM
including the near-wall formulation in § 3. The EARSM is based on both the K–ε
and K–ω models discussed in § 3.4.

The three-dimensional form of the model has been used and the influence of the
approximation of N was assessed by computing the case by using both the zeroth-
(Nc) and first-order perturbation solution of N. The former is given by (2.7) and
labelled ‘EARSM 0’ in the figures while the latter ‘EARSM 1’ is given by (2.13).

Figure 6 shows the predicted axial velocity for Z = 1 using the Chien K–ε
model alone and as the platform for EARSM calculations. The original Chien eddy-
viscosity K–ε model is seen to be completely insensitive to rotation, while the EARSM
predictions agree well with the experimental results. It is also seen that the different
approximations of N only have a minor influence on the predicted velocity profile.
In figure 7 predictions for different values of Z are shown for the K–ω model as the
platform of the EARSM. The calculated results are seen to capture well the trend
with increasing rate of rotation. The EARSM predictions with the K–ε and K–ω
platforms are quite similar except in a region close to the wall. The angular velocity
(figure 8) is also seen to be reasonably well predicted with the different EARSM
formulations, among which the differences are small.

The prediction of the velocity could, however, be improved by the inclusion of the
neglected other cubic term associated with β5 (see (1.18)) and tuning the coefficients
for this special case, but it is worth noticing that the results here are obtained without
any tuning whatsoever. Moreover, three-dimensional effects driven by turbulence are
in most cases quite weak compared to three-dimensional effects driven by mean
momentum forces. The rotating pipe is in this case very extreme since the three-
dimensional effects are purely turbulence driven.
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Figure 7. Axial velocity in rotating pipe flow for different rotation ratios. Computations with the
current EARSM (EARSM 0) based on K–ω (lines) compared to experiment by Imao et al. (1996)
(symbols) for Z = 1 ( ) (�), Z = 0.5 ( ) (•) and Z = 0 ( ) (N).
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Figure 8. Angular velocity in rotating pipe flow for rotation ratio Z = 1. Computations with Chien
K–ε model ( ) and the current EARSM based on Chien K–ε, EARSM 0 ( ) and EARSM 1
( ), and the current EARSM (EARSM 0) based on K–ω ( ) compared to experiment by Imao
et al. (1996) (�).

The zeroth- and first-order solutions of N are only different approximations of the
exact solution for N or P/ε. The error can be investigated by computing the P/ε
ratio using the different approximations of N from a given flow field. Figure 9 shows
P/ε with N evaluated from the first- (EARSM 0) and second- (EARSM 1) order
solutions of N given by (2.7) and (2.13) respectively, compared to the exact solution.
The mean flow invariants of these expressions were taken from a fixed mean flow
field, which was the solution with EARSM 0 based on K–ε for Z = 1. We can see a
substantial difference between the zeroth- and first-order solutions and also that the
first-order solution is quite close to the exact one. As seen from the previous figures
this difference has still a quite small influence on the computed velocity profiles.
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Figure 9. Production to dissipation ratio in rotating pipe flow for different approximation levels for
N: EARSM 0 ( ) and EARSM 1 ( ) compared to the exact ( ) solution. The mean flow
from the EARSM 0 K–ε solution for Z = 1 was used.

2.3. Solution of the general quasi-linear ARSM equation

So far, the explicit solution of the ARSM resulting from the special case of the
Launder et al. (1975) model with c2 = 5

9
has been analysed. The solution procedure

described in this section can, however, be applied to any ARSM that has been derived
from a linear or quasi-linear pressure–strain model. Quasi-linear here means that the
pressure–strain model must be tensorially linear in a but may contain terms like
tr{aS}a. The resulting ARSM may be written

Na = −A1S + (aΩ−Ωa)− A2

(
aS + Sa− 2

3
tr{aS}) (2.21)

where

N = A3 + A4

P
ε
. (2.22)

The solution of (2.21) for three-dimensional mean flow was first derived by Gatski
& Speziale (1993) where they considered the production to dissipation ratio as
a universal constant which is equivalent to A4 = 0. The fully consistent solution
for two-dimensional mean flow was first derived by Girimaji (1996a, b) where the
production to dissipation ratio was obtained as part of the solution.

The solution of (2.21) for three-dimensional mean flow is given in Appendix C.
The algebra in that case is considerably more complex than for the simplified ARSM
with c2 = 5

9
. In this section we restrict our attention to two-dimensional mean flow

for which the solution for the β-coefficients is

β1 = −A1N

Q
, β2 = 2

A1A2

Q
and β4 = −A1

Q
. (2.23)

The denominator

Q = N2 − 2IIΩ − 2
3
A2

2IIS (2.24)

for this case consists of both positive and negative terms but it can be shown that it is
strictly positive due to the fact that N is a function of IIS and IIΩ (see Appendix C).

The Launder et al. (1975) model (LRR) is a special case with the A1 to A4

coefficients given in table 3. Also, the SSG model by Speziale, Sarkar & Gatski (1991)
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A1 A2 A3 A4

LRR
88

15 (7c2 + 1)

5− 9c2

7c2 + 1

11 (c1 − 1)

7c2 + 1

11

7c2 + 1
Current model (c1 = 1.8, c2 = 5

9
) 1.20 0 1.80 2.25

Original LRR (c1 = 1.5, c2 = 0.4) 1.54 0.37 1.45 2.89

Linearized SSG 1.22 0.47 0.88 2.37

Gatski & Speziale w/o regularization 1.22 0.47 5.36 0

Table 3. The coefficients in the general ARSM for different models.

may be expressed in this form if it is linearized according to Gatski & Speziale (1993).
The SSG pressure–strain model reads

Π

ε
= −

(
C1

2
+
C∗1
2

P
ε

)
a+

(
C3 − C∗3

2

√
IIa

)
S +

C4

2
(aS + Sa− 2

3
tr{aS}I )

−C5

2
(aΩ−Ωa) +

C2

4
(a2 − 1

3
IIaI ), (2.25)

where IIa = tr{a2} and the coefficients are

C1 = 3.4, C∗1 = 1.8, C2 = 4.2, C3 = 4
5
, C∗3 = 1.30, C4 = 1.25, C5 = 0.40.

(2.26)

The linearized SSG model used by Gatski & Speziale (1993) is then obtained by
neglecting the quadratic anisotropy term and for the IIa invariant they used the
equilibrium value predicted by the SSG model for two-dimensional homogeneous
turbulence. This results in the following set of coefficients:

C1 = 3.4, C∗1 = 1.8, C2 = 0, C3 = 0.36, C∗3 = 0, C4 = 1.25, C5 = 0.40,

(2.27)

and A1 to A4 are given in table 3. Gatski & Speziale (1993) based their EARSM on
this linearized SSG pressure–strain model and implied an additional approximation
in order to avoid the nonlinearity in the ARSM equation system. The approximation
was to use the asymptotic value for the production to dissipation ratio as a universal
constant

P
ε

=
Cε2 − 1

Cε1 − 1
(2.28)

which is equivalent to the A1 to A4-coefficients given in table 3 for Gatski & Speziale
without regularization. The approximation made by Gatski & Speziale (1993) is quite
severe, especially since the A4-coefficient is zero which means that the denominator
Q given by (2.24) may become singular. However, in their final expression they have
regularized the denominator to avoid the singular behaviour. That form of the model
however, could, not exactly be expressed through the A1 to A4 coefficients.

The predicted anisotropies in the log-layer and for the asymptotic homogeneous
shear flow are listed in tables 4 and 5. The linearized SSG model is able to predict
all individual Reynolds stresses fairly well for the two different cases. The Gatski &
Speziale (1993) model gives the same result for the asymptotic homogeneous shear
but fails in the log-layer since the approximation of the production to dissipation
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a12 a11 a22 a33 σ

DNS −0.29 0.34 −0.26 −0.08 1.65
Current model (c1 = 1.8, c2 = 5

9
) −0.30 0.25 −0.25 0.00 1.69

Original LRR (c1 = 1.5, c2 = 0.4) −0.36 0.26 −0.20 −0.06 1.40
Linearized SSG −0.32 0.36 −0.26 −0.10 1.59
Gatski & Speziale w/o regularization −0.29 0.22 −0.16 −0.06 1.75
Gatski & Speziale −0.28 0.22 −0.16 −0.06 1.76

Table 4. The predicted anisotropy in the log-layer using different models assuming balance
between turbulence production and dissipation compared to channel DNS (Kim 1989).

a12 a11 a22 a33 P/ε
Experiment −0.30 0.40 −0.28 −0.12 1.8
Current model (c1 = 1.8, c2 = 5

9
) −0.30 0.31 −0.31 0.00 1.8

Original LRR (c1 = 1.5, c2 = 0.4) −0.38 0.32 −0.25 −0.07 2.3
Linearized SSG −0.32 0.41 −0.30 −0.11 1.9
Gatski & Speziale w/o regularization −0.32 0.41 −0.30 −0.11 1.9
Gatski & Speziale −0.31 0.41 −0.30 −0.11 1.9

Table 5. The predicted anisotropy in homogeneous shear flow using different models with σ = 3.0
compared to measurements by Tavoularis & Corrsin (1981).

ratio used by them is only consistent for asymptotic shear flows. It should be noted
here that the regularization in the Gatski & Speziale model does not influence the
solution for these two cases.

The proposed model based on the LRR pressure–strain model is a reasonable
choice here due to its simplicity in three-dimensional mean flows, and since the most
important anisotropies, namely a12 and a22, are fairly well predicted for both the
log-layer and for the asymptotic homogeneous shear flow. If better predictions of
the a11 and a33 anisotropies are needed, the linearized SSG may be considered as an
alternative but one should realize that this model is considerably more complex for
three-dimensional mean flows.

3. Near-wall treatments
In the model presented so far no special attention has been given to the very near-

wall region. To obtain the correct behaviour in this region it needs to be modified in a
similar way to low Reynolds number two-equation turbulence models. An important
difference compared to eddy-viscosity models is that the effective Cµ or β1 in the
proposed model is not a constant and, as has been shown by Wallin & Johansson
(1996), will adjust to the near-wall flow in a more natural way than is possible with
eddy-viscosity models.

The turbulence timescale τ = K/ε, which is used to scale the strain- and rotation-
rate tensors goes to zero as the wall is approached. A more appropriate expression
for the timescale was proposed by Durbin (1993) and reads

τ = max

(
K

ε
, Cτ

√
ν

ε

)
. (3.1)

This is just the usual timescale with a lower bound given by the Kolmogorov scale.
Durbin (1993, 1995) uses Cτ = 6.0 which will be kept in this study also.
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In the very near-wall region of any shear flow the presence of the solid boundary
will enforce a nearly parallel flow except in the immediate vicinity of a separation
or stagnation point. A fully developed channel flow is exactly parallel and will be
used to formulate and calibrate the very near-wall correction. A specific coordinate
system will be used in the derivation of the near-wall correction but the final form is
invariant to coordinate system.

In a channel flow, as well as in all parallel flows, we can simply express the
anisotropy in terms of the two-dimensional β-terms and the non-dimensional shear,
σ, which in parallel flow reads

σ =
1

2

K

ε

dU

dy
. (3.2)

The invariants can then simply be expressed as IIS = 2σ2 and IIΩ = −2σ2 and the
anisotropy becomes

a12 = σβ1, a11 = σ2
(

1
3
β2 − 2β4

)
, a22 = σ2

(
1
3
β2 + 2β4

)
. (3.3)

By letting U in (3.2) represent the velocity along the limiting streamline at the wall
the expressions (3.3) can also be said to be approximately valid for three-dimensional
near-wall boundary layer flows.

The very near-wall behaviour is studied by using channel DNS data by Kim (1989)
at Reδ ≈ 7800 or Reτ ≈ 395. The mean velocity, K and ε profiles obtained from the
DNS data have been used to compute the modelled anisotropy, which is compared
to the anisotropy determined directly from the DNS data.

The near-wall asymptotic behaviour can be written as

u+
rms = auy

+ + buy
+2

+ . . . ,

v+
rms = avy

+2
+ bvy

+3
+ . . . ,

w+
rms = awy

+ + bwy
+2

+ . . . ,

K+ = aKy
+2

+ bKy
+3

+ . . . ,

−uv+ = auvy
+3

+ buvy
+4

+ . . . .


(3.4)

So, Lai & Zhang (1991) summarize these near-wall asymptotic coefficients, au, av, . . .,
for different experimental and numerical near-wall turbulence studies of flat plates,
channels and pipes at different Reynolds numbers. These coefficients together with
the DNS data by Kim (1989) have been used to calibrate the coefficients in the
near-wall corrections.

3.1. The shear component of the Reynolds stress

In a channel flow, the mean flow is only directly affected by the Reynolds shear stress,
uv, so let us start by looking at the model of a12.

The modelled a12 anisotropy without any near-wall corrections is nearly constant as
the wall is approached while DNS data exhibit a behaviour similar to an exponential
decay (see figure 10). The obvious choice of ‘wall damping function’ is of van Driest
type

f1 = 1− exp

(
− y

+

A+

)
. (3.5)

Also shown in figure 10 is the a12 behaviour predicted by a standard K–ε model,
without any near-wall damping function, which gives strongly negative values near
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Figure 10. a12 anisotropy (a) and uv+ stress (b) in channel flow. Comparison of the current EARSM
with near-wall correction ( ) with DNS data (•) (Kim 1989). The computed a12 anisotropy using
the current EARSM without near-wall correction ( ) and the eddy-viscosity model ( ) is also
shown. The predicted anisotropy was evaluated by use of the DNS data for the S and Ω fields.

the wall, almost down to −2. Note that this is well outside the range of physically
realizable values, that are limited to be between ±1. The K–ε model cannot be
correctly damped towards the wall as easily as the EARSM and the EARSM is
therefore much better suited to be integrated down to the wall. This is due to the
fact that the β1-coefficient is not a constant, as in the eddy-viscosity hypothesis,
but a function of the mean flow strain rate. In the very near-wall region the strain,
normalized by the turbulent timescale, becomes large but the β1-coefficient goes to
zero for large strain rates giving a balanced a12 anisotropy (cf. figure 4).

The slope of the a12 anisotropy at the wall can be evaluated from the near-wall
asymptotic behaviour to be ∂a12/∂y

+ = −auv/aK . The constant A+ varies between
18 and 37 in the data summarized by So et al. (1991). By choosing A+ = 26, which
also is the standard value in the van Driest function, a good fit to the DNS data is
obtained according to figure 10, which shows the corresponding uv Reynolds stress.
The low Reynolds number coefficient can now be determined as

β1,low-Re = f1β1, (3.6)

where β1 is the high Reynolds number coefficient obtained from the solution in § 2.

3.2. The normal components of the Reynolds stress

The correct near-wall behaviour for the normal Reynolds stresses is then ensured
through a correct behaviour of the β2- and β4-coefficients. The near-wall asymptotic
behaviour of the a11 and a22 anisotropy is

a11 =
u2

K
− 2

3
=
a2
u

aK
− 2

3
+ O(y+),

a22 =
v2

K
− 2

3
=
a2
v

aK
y+2 − 2

3
= − 2

3
+ O(y+2

).

 (3.7)

The modelled a11 and a22 anisotropies, without any wall corrections, are limited
near the wall, so a blending of the near-wall asymptote and the outer solution can be
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Figure 11. a11 (a) and a22 (b) anisotropies in channel flow. Comparison of the current EARSM
with ( ) and without ( ) near-wall correction with DNS data (•) (Kim 1989). The predicted
anisotropy was evaluated by use of the DNS data for the S and Ω fields.

done. For simplicity, the same blending function, f2, is used for the both anisotropies,
which become

a11,low-Re = f2a11 + (1− f2)
(
B2 − 2

3

)
,

a22,low-Re = f2a22 + (1− f2)
(− 2

3

)
,

}
(3.8)

where B2 = a2
u/aK . Equation (3.7) states that a22 has zero slope at the wall so the

function f2 must also have zero slope. A simple choice that satisfies this criterion is
f2 = f2

1 . The low Reynolds number coefficients then become

β2,low-Re =
3B2 − 4

2σ2

(
1− f2

1

)
, β4,low-Re = f2

1β4 − B2

4σ2

(
1− f2

1

)
, (3.9)

where β4 is the high Reynolds number coefficient obtained from the solution in § 2.
The constant B2 can be evaluated using the data summarized by So et al. (1991)

and varies between 1.56 and 1.84. By choosing B2 = 1.8 a good fit to the DNS data
is obtained (see figures 11 and 12).

3.3. Extension to general flows

The near-wall correction described so far was obtained for a special case, namely par-
allel two-dimensional flows, and cannot directly be generalized to three-dimensional
mean flows. Some singularities in flows near separation must be considered and the
formulation needs to be written in a coordinate-system-invariant form. These addi-
tional extensions must be formulated such that the original form above is retained
for parallel two-dimensional flows.

So far, the near-wall correction is described in terms of σ, which is defined in (3.2)
for a specific coordinate system. By using IIS = 2σ2, a coordinate-system-invariant
form of the near-wall correction can be obtained. In separated flow the shear rate σ
may become small, leading to a singular behaviour of the near-wall corrections to the
β2- and β4-coefficients. To avoid this problem, the shear rate in the denominator of
the near-wall correction is limited to the equilibrium shear rate where the turbulence
production balances the dissipation rate. The near-wall shear rate is always larger
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Figure 12. Reynolds stresses in channel flow. Comparison of the current EARSM, uu+ ( ) (a)
and vv+ ( ), ww+ ( ) (b), with DNS data, (�) and (•), (Kim 1989). The predicted anisotropy
was evaluated by use of the DNS data for the S and Ω fields.

than the equilibrium one in zero pressure gradient flows and the limiter will only
be active in flows near separation. The anisotropy model including the near-wall
formulation then reads

a = f1β1S +
(
1− f2

1

) 3B2 − 4

max
(
IIS , II

eq
S

) (S2 − 1
3
IIS I )

+

(
f2

1β4 − (1− f2
1

) B2

2 max
(
IIS , II

eq
S

)) (SΩ−ΩS) , (3.10)

where IIeq
S is the equilibrium value obtained by setting P = ε in the two-dimensional

solution and reads IIeq
S = 405c2

1/ (216c1 − 160) ≈ 5.74 for c1 = 1.8. The β-coefficients
are given by equation (2.5) and f1 is given by equation (3.5). Please observe that even
though the high Reynolds number β2-coefficient is zero the tensor group associated
with the β2-coefficient does not vanish.

The straightforward extension to three-dimensional flow reads

a = f1β1S +
(
1− f2

1

) 3B2 − 4

max
(
IIS , II

eq
S

) (S2 − 1
3
IIS I )

+f2
1β3

(
Ω2 − 1

3
IIΩ I

)
+

(
f2

1β4 − (1− f2
1

) B2

2 max
(
IIS , II

eq
S

)) (SΩ−ΩS)

+f1β6

(
SΩ2 +Ω2S − 2

3
IV I

)
+ f2

1β9

(
ΩSΩ2 −Ω2SΩ

)
. (3.11)

This form reduces to (3.10) for two-dimensional mean flows.
The near-wall correction is strictly valid only for parallel two-dimensional mean

flow but the very near-wall flow is, however, near parallel and two-dimensional also
for quite complex three-dimensional flow fields so the equation (3.11) can be used
as a first approximation. The correction can be extended to also be valid for flows
near stagnation points like separation and reattachment points, for flows over curved
surfaces and also for three-dimensional mean flows. This extension of the near-wall
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correction is, however, outside the scope of this paper but will be addressed in future
studies.

3.4. Length-scale determining equation

So far, we have proposed a new explicit constitutive relation between the mean flow
strain rate and the Reynolds stresses including near-wall treatments. The choice of
velocity- and length-scale determining equations has not yet been discussed. The
turbulent kinetic energy, K , is a natural choice for determining the turbulent velocity-
scale since this equation needs no further modelling. The dissipation of the turbulent
kinetic energy, ε, is the most commonly used quantity for determining the turbulent
length-scale but other alternatives are also possible like τ and ω.

Common to all length-scale determining equations is that they need a lot of ad
hoc modelling, substantially more than the K-equation. The different terms are quite
empirical and are tuned for specific flow cases. There are many different K–ε models
with the major differences in the near-wall modelling in the ε-equation and in the
eddy-viscosity relation. Most of the ε-models are also tuned and calibrated together
with the eddy-viscosity assumption, which gives a poor description of the near-wall
anisotropy. One should thus not be surprised if the proposed EARSM together with
an existing length-scale model does not give any improvements and perhaps also
worse capabilities in predicting basic wall-bounded flows.

The correct methodology to obtain a length-scale determining equation is to develop
it from scratch together with the proposed EARSM, so that one avoids the risk of
inheriting terms that are needed to balance the errors introduced by the eddy-viscosity
assumption. This is, however, outside the scope of this paper but will be addressed
in future studies. For an illustration of the capability of the proposed model and to
obtain an indication of how different length-scale determining equations act, we have
tested the proposed model together with the well known Chien (1982) K–ε model
and the Wilcox (1994) K–ω model for the fully developed channel case simulated by
Kim (1989).

In these computations we did not use the Daly & Harlow model, equation (1.17),
of the diffusion terms in the K and ε (or ω) equations. The approach was to use
the standard eddy-viscosity modelling of the diffusion term but with an effective Cµ
evaluated from the EARSM such as Ceff

µ = −f1β1/2. The differences between the
Daly & Harlow and the eddy-viscosity approaches were found to be small for the
K–ε model as long as the effective Cµ is used rather than a constant. In case of
the K–ω model, the turbulent diffusion is complete different compared to that of
the K–ε model and thus the Daly & Harlow approach needs to be recalibrated.
The eddy-viscosity approach could, however, directly be used also here as long as
the effective Cµ (or β∗) is used. In three-dimensional mean flows the effective Cµ is
Ceff
µ = −f1(β1 + IIΩβ6)/2

Figures 13 to 18 show the result of the computations with the two different
two-equation models based on the proposed EARSM as well as with the original
eddy-viscosity assumption. The EARSM has been used both with the original and
modified (‘mod’) length-scale equations.

If we first look at the velocity profiles in figure 13 one finds that the additive
constant B in the log-law is much too high when the EARSM is used. This clearly
illustrates the need for recalibration discussed above. The figure also shows the results
when the length-scale equation is tuned or modified to better match the log-law. In
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Figure 13. The streamwise velocity in channel flow. Computations based on Chien K–ε (a) and
K–ω (b) using eddy viscosity ( ) and the current EARSM with the original ( ) and modified
( ) ε and ω equations compared with DNS data (•) (Kim 1989) and the log-law ( ).
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Figure 14. The turbulent kinetic energy in channel flow. Computations based on Chien K–ε (a) and
K–ω (b) using eddy viscosity ( ) and the current EARSM with the original ( ) and modified
( ) ε and ω equations compared with DNS data (•) (Kim 1989).

the K–ε model the definition of ε in Chien’s model has been changed to

ε = ε̃+
2νK

y2
exp

(−Cky+
)
, (3.12)

where the constant Ck = 0.04. This means that the original ‘wall dissipation’ is
multiplied by an exponential function to give a more rapid decay of the modification
near the wall. In the Wilcox K–ω model, the constant Rβ was increased from 8 to 10
to obtain the desired behaviour. For a more thorough comparison between K–ε and
K–ω models the reader may wish to consult Menter (1994).

It is also interesting to note the clear improvement in the K-profiles with the
proposed EARSM both for the K–ε and K–ω models in figure 14. The near-
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Figure 15. The dissipation of turbulent kinetic energy in channel flow. Legend as in figure 14.
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Figure 16. The a12 anisotropy in channel flow. Legend as in figure 14.

wall dissipation ratio shown in figure 15 illustrates the need for a better near-wall
modelling of the length-scale equation. In figures 16 to 18 we can see the good near-
wall behaviour of the proposed EARSM which seems to be quite insensitive to the
choice of basic two-equation model. In figure 16 we can also clearly see how poorly
the a12 anisotropy is predicted with the eddy-viscosity models.

The rotating pipe flow discussed in § 2.2.1 was computed with these two models
(K–ε and K–ω) as platforms for EARSM. Figures 6 and 7 show that differences are
seen in a region close to the wall, where the K–ε based model shows a higher wall
shear stress than the K–ω based model. The latter correctly captures the trend of
a decreasing skin friction with increasing rate of rotation, whereas the K–ε based
EARSM gives the opposite trend.

3.5. Alternative near-wall scaling

The damping function, f1 given by equation (3.5), is formulated in terms of y+.
The scaling with the local wall skin friction is not valid in flows near separation and
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Figure 18. The normal Reynolds stresses in channel flow. Legend as in figure 14.

reattachment. Other possibilities than y+ are Rey ≡
√
Ky/ν or the turbulent Reynolds

number Ret ≡ K2/νε (see e.g. Wilcox 1993).
The approach is here to formulate an alternative scaling y∗ in terms of Rey or Ret

so that y∗ ≈ y+ for y+ 6 100 in channel flows. Rey and Ret were computed from
DNS data at different Reynolds numbers ranging from Reτ = 150 to 650 in channel
flows (Moser, Kim & Mansour 1998) and zero pressure gradient boundary layers
(Spalart 1988). It was found that Rey was increasing from the wall more linearly with
less scattering compared to Ret. Moreover, it should not pose any major problems to
compute the wall distance y needed for Rey if that is defined as the distance to the
closest wall point. The following form for y∗ is thus proposed:

y∗ = Cy1

√
Rey + Cy2Re

2
y. (3.13)

The
√
Rey-term is motivated by the fact that the near-wall asymptotic behaviour for

Rey is ∼ y2. The Re2
y-term is artificially introduced to obtain a near linear relation
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Figure 20. (a) The wall skin friction and (b) the velocity profile for an adverse pressure gradient
boundary layer (U∞ ∼ x−0.25). Computations with standard Wilcox (1988) K–ω ( ), Chien K–ε
( ), EARSM based on K–ω and y+ ( ) or y∗ ( ) and the Hanjalić (1995) RST model ( ).
Comparisons with DNS data (•), M. Skote (private communication).

in the buffer region also. With Cy1 = 2.4 and Cy2 = 0.003 good agreement with y+

for channel and zero pressure gradient boundary layer flows at different Reynolds
numbers is obtained, see figure 19.

In the damping function f1, y
+ is then replaced by y∗

f1 = 1− exp

(
− y

∗

A+

)
. (3.14)

In figure 19 the damping function f1 based on y∗ is compared to f1 based on y+. The
correspondence is good except for the lowest Reynolds numbers.
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Figure 21. (a) Wall pressure and (b) skin friction coefficients for the RAE2822 wing profile
(M = 0.754, α = 2.57◦ and Re = 6.2 × 106). Predictions using Wilcox (1994) K–ω ( ) and the
current EARSM based on K–ω with damping function based on y+ ( ), y∗ ( ) or without
any damping functions ( ), compared to experimental data (•) (Cook et al. 1979). The geometry
is the measured one including a camber correction.

In some situations the y+ scaling may worsen the computational results. In a forth-
coming study by M. Skote adverse pressure gradient boundary layers are studied by
DNS. For the highest pressure gradient studied, with the pressure gradient similarity
parameter m = −0.25 (U∞ ∼ xm), the difference between the y+ and y∗ approaches
are significant here, see figure 20. For this case it is obvious that the y+ scaling
degenerates the model performance and should be avoided.

In other cases, where the Reynolds number is higher, the near-wall scaling is not as
critical. Figure 21 shows the computational results for the two-dimensional RAE2822
aerofoil profile using the proposed EARSM compared to the Wilcox (1994) K–ω
model. The flow in this case is compressible and the formulation is modified in a
manner described in § 4. The EARSM approach clearly improves the position of
the shock and the results are very much in line with differential Reynolds stress
computations by Hellström, Davidson & Rizzi (1994) for exactly the same conditions
and geometry.

The damping function in the EARSM is formulated in terms of y+ as well as y∗ and
the figure shows no major differences between these approaches except in the separated
region where the y+ formulation gives a somewhat larger negative skin friction. In
the figure a computation using the proposed EARSM without any damping functions
whatsoever is also shown. For that choice, the standard Wilcox (1988) K–ω, also
without damping functions, must be used as the platform. This combination gives,
however, incorrect near-wall behaviour for the turbulence quantities but the mean
velocity profiles are well reproduced. That is also seen in the figure where no major
differences between the EARSM with or without damping functions are present.

The convergence history is shown in figure 22 where we can see that there are no
major differences in convergence rate. Actually, the proposed EARSM converges to
a somewhat lower residual than the corresponding eddy-viscosity model for this case.
The numerical parameters are the same for these two cases and the computational
time for the 5000 iteration steps is 6% higher for the EARSM computation. This case
was found to be not completely numerically stationary which results in the residual
‘hanging’ as for the K–ω model. The fluctuations are, however, very small and could
not be seen in the solution. In other cases without separation the convergence curves
are even closer to each other, and the convergence rates are in general faster than
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Figure 22. Convergence history for the RAE2822 wing profile. Wilcox K–ω ( ) compared with
the current EARSM based on K–ω ( ). The computational time is increased by 6% by using
EARSM. Three levels of full multigrid is used.
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Figure 23. Wall pressure coefficient Cp for the LANN-wing (M = 0.82, α = 2.59◦ and Re = 5.4×106)
at the spanwise position of 0.474. Predictions using Wilcox (1988) K–ω ( ) and the current
EARSM ( ) based on K–ω without wall damping functions. Comparison with experimental data
(•) (Horsten et al. 1983).

for the case shown in figure 22. The computational results were obtained using the
euranus code by Rizzi et al. (1993) which is an explicit time-stepping multigrid and
multiblock Navier–Stokes solver. The grid convergence was assessed by repeating the
computation on a coarser grid.

A further example is a three-dimensional transonic supercritical wing (figure 23).
This case is computed using the standard Wilcox (1988) K–ω model and the EARSM
based on that. Since that K–ω model has no damping functions the EARSM without
damping functions must also be used for consistency. Again, the predicted shock
position is improved compared to the eddy-viscosity model. This case illustrates the
benefit of the proposed model which is also viable in expensive three-dimensional
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cases, here with almost one million grid points. Most importantly, there is no sub-
stantial increase in the computational cost compared to the, in many cases, robust
standard K–ω model.

4. Compressibility
Many turbulent flow applications are within the Mach number regime where com-

pressible effects must be considered. Also, in low speed flow compressible effects may
be important due to local heating or cooling of the flow. Compressible turbulent flow
may be classified according to Friedrich & Bertolotti (1997) into flows with vanishing
compressibility effects due to turbulent fluctuations and flows where such effects play
a significant role. Friedrich & Bertolotti (1997) also states that compressibility effects
due to turbulent fluctuations might be important in hypersonic, high Mach number,
wall-bounded flows and in mixing layers at high convective Mach numbers. The un-
derstanding of such flows is poor and models capable of distinguishing the principal
differences between wall-bounded and free shear flows are not well developed. The
compressibility effects, due to turbulent fluctuations, increase the anisotropy of the
Reynolds stress tensor (see Friedrich & Bertolotti 1997) and depend themselves on the
anisotropy, which means that algebraic Reynolds stress models are better suited than
eddy-viscosity models to act as a basis for improving the prediction of compressibility
effects.

In wall-bounded flows with Mach numbers below 5 compressibility effects due to
turbulent fluctuations may be neglected and the effect of compressibility enters into
the problem essentially only through the mean flow compressibility. In this study
we will restrict attention to this class of flows and a straightforward compressibility
extension of the incompressible model will be made.

First, the stress anisotropy and the turbulent kinetic energy must be redefined as
aij ≡ ρuiuj/ρK − 2δij/3 and K ≡ ρuiui/2ρ where ρ is the local mean density of the
fluid. The trace of the strain is not zero for compressible flow. We may instead use a
somewhat redefined normalized strain rate tensor

Sij ≡ τ

2

(
Ui,j +Uj,i

)− D
3
δij , (4.1)

where the normalized dilatation of the mean flow is defined as D ≡ τUk,k .
The redefinition of S to have zero trace allows us to make use of the incompressible

solution process. The redefinition also implies, however, that the S33-component is
non-zero for two-dimensional mean flow in the (x, y)-plane and that the simplifications
for two-dimensional mean flow are not strictly valid for compressible flow. This will
be addressed as a special case later in this section.

The general linear model of the LRR rapid pressure–strain rate model for incom-
pressible flow does not have zero trace in compressible flow, so the model needs to
be generalized according to Vandromme (1992) and reads

Π
(r)
ij = −c2 + 8

11
(Pij − 2

3
Pδij)− 30c2 − 2

55
ρK

×(Ui,j +Uj,i − 2
3
Ul,lδij)− 8c2 − 2

11
(Dij − 2

3
Pδij), (4.2)

where Pij = −ρuiukUj,k−ρujukUi,k and Dij = −ρuiukUk,j−ρujukUk,i. The incompress-
ible models for the slow pressure–strain and the dissipation tensor can also be used
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here. The general ARSM for compressible flow can now be written as(
c1 − 1− 6c2 + 4

11
D− tr{aS}

)
a

= − 8
15
S +

7c2 + 1

11
(aΩ−Ωa)− 5− 9c2

11

(
aS + Sa− 2

3
tr{aS}I) (4.3)

which is identical to the incompressible form, equation (1.13), except for the dilatation
term on the left-hand side and the different definitions given above. The same
conclusion is valid for the simplified equation obtained by setting c2 = 5

9
, which reads(

c1 − 1− 2
3
D− tr{aS}) a = − 8

15
S + 4

9
(aΩ−Ωa) . (4.4)

The solution of the simplified compressible ARSM equation is the same as the
incompressible solution except for the definition of the c′1-coefficient, which for the
compressible case is

c′1 = 9
4

(
c1 − 1− 2

3
D) (4.5)

bearing in mind that Sij here is defined by (4.1).

4.1. Compressible two-dimensional mean flow

An approximation of the compressible ARSM equation can be derived by an expan-
sion around a solution obtained by use of the two-dimensional simplification valid
in incompressible flow. Let us first define a compressible two-dimensional strain rate
as S2D

ij ≡
(
τ/2
) (
Ui,j +Uj,i

) − Dδ2D
ij /2 where δ2D

ij ≡ δij except that δ2D
33 = 0. The

compressible ARSM, equation (4.4), can now be written as(
c1 − 1− 2

3
D− tr{a2DS2D}) a2D = − 8

15
S2D + 4

9

(
a2DΩ−Ωa2D

)
(4.6)

with the solution a2D, which is derived using the two-dimensional solution process
for incompressible flow. The true anisotropy, a, is then related to the solution a2D, as
described below.

The difference between S and S2D is of O(D) which can be assumed small except
in a shock wave. For the same reason the difference between a and a2D can also be
assumed to be of O(D) and with the simplest tensorial form that relates the two-
dimensional and three-dimensional anisotropies, leading to the following assumption.
Let

a = a2D + βaD (I 2D − 2
3
I
)

+ O(D2), (4.7)

and subtract equation (4.6) from equation (4.4). Sorting terms in powers of D gives
us the first-order solution in D

βa = − 4

15
(
c1 − 1− tr{a2DS2D}) . (4.8)

In obtaining this solution the following relations have been used:

S2D = S − 1
2
D (I 2D − 2

3
I
)

tr{a2DS2D} = tr{aS}+ O(D2)

a2DΩ−Ωa2D = aΩ−Ωa+ O(D2).

 (4.9)

The zeroth-order solution, a2D, is obtained as described for the incompressible case,
with the only difference being that c′1 is now given by (4.5). The full solution is then
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Figure 25. (a) Wall pressure and (b) skin friction coefficient for the impinging shock at Mach 5 with
the flow deflection angle β = 10◦. Comparison of the predictions using Chien K–ε ( ), Wilcox
K–ω ( ) and the current EARSM based on K–ε ( ) and K–ω ( ) with the experiment by
Schülein et al. (1996) (•).

given by

a = β1S
2D + β4

(
S2DΩ−ΩS2D

)
+ βaD (I 2D − 2

3
I
)

+ O(D2) (4.10)

with βa from (4.8).

4.2. Shock/boundary layer interaction

The compressible form of the proposed model together with the near-wall formula-
tions has been tested on a shock/boundary layer interaction. A turbulent boundary
layer at Mach 5 on a flat plate interacts with an oblique shock from a shock generator
above the plate, see figure 24. The flow deflection angle is 10◦ which gives a strong
enough shock to cause a boundary layer separation. The experiment by Schülein,
Krogmann & Stanewsky (1996) was performed at DLR in Göttingen. Figure 25
shows the computed wall pressure and skin friction coefficient along the flat plate
compared to the experimental data. The turbulence models used are the Chien (1982)
K–ε model and the Wilcox (1994) K–ω model based on the original eddy-viscosity
assumption and also based on the proposed EARSM. The computational results were
obtained using the EURANUS code by Rizzi et al. (1993). The grid convergence was
assessed by repeating the computation on a coarser grid.
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The size of the separated region is underestimated by the two eddy-viscosity models
whereas a correct separation length is obtained when the models are based on the
proposed EARSM. This can be seen both in the skin friction behaviour and in the
wall pressure distribution. The computed wall pressure is, however, somewhat shifted
downstream.

The Chien K–ε model strongly over-predicts the skin friction downstream of the
reattachment point, which is typical for many low Reynolds number K–ε models.
This behaviour is inherited by the proposed EARSM based on the Chien K–ε model.
The K–ω models give much better skin friction predictions.

5. Diffusion term
In regions of the flow where the production to dissipation ratio is small, the

assumption of negligible effects of advection and diffusion of the anisotropy may
cause problems, also noticed by Taulbee (1992). In the outer-most part of a boundary
layer and in the centre of a turbulent channel flow the magnitude of the β1-coefficient
may thus be too large leading to an overestimation of the uv Reynolds stress. The
behaviour of the model can be analysed by looking at the effective Ceff

µ ≡ −β1/2
when the strain rate goes to zero, which for the simplified ARSM reads

Ceff
µ (σ → 0) =

3

5c′1
. (5.1)

For the proposed model constants Ceff
µ ≈ 0.33 which is far too high.

In this section we will discuss the possibility of including a correction to the ARSM
equations formulated so that the proposed EARSM solution process can be retained.
The transport equation for the Reynolds stress anisotropy is given by (1.1) where
Tijl and T

(K)
l are the flux terms for the Reynolds stress tensor and turbulent kinetic

energy. A simple model for the neglected diffusion term may be written as

∂Tijl

∂xl
− uiuj

K

∂T
(K)
l

∂xl
= CDaij

∂T
(K)
l

∂xl
, (5.2)

which gives a modification of the c′1 coefficient in the simplified ARSM equation (2.2).
The modified coefficient reads

c′1 =
9

4

(
c1 − 1− CD

ε

∂T
(K)
l

∂xl

)
. (5.3)

There are, however, numerical problems associated with this form due to the
inclusion of the second derivative of K . This could be avoided if the term that
balances the turbulent flux term in the K-equation (1.15) is used to approximate the
turbulent flux of K:

∂T
(K)
l

∂xl
≈ P − ε. (5.4)

The advection of K is neglected here. Moreover, the extra term worsens the model
behaviour for large strain rates and can even lead to a singular behaviour. The
correction thus needs to be switched off for P/ε > 1. The definition of the c′1
coefficient then becomes

c′1 =
9

4

[
c1 − 1 + CD max

(
1− P

ε
, 0

)]
. (5.5)
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Figure 26. The a12 anisotropy versus strain rate σ for parallel flow. The current model without
( ) and with ( ) diffusion model compared to an eddy-viscosity model ( ) and the Menter
(1993) SST model ( ).

The problem with this form is that it is implicit in the P/ε ratio and that the
max function makes it impossible to solve. The diffusion model will thus be further
approximated by using P/ε = −β1IIS . If β1 is approximated with β

eq
1 where P = ε,

the correction is guaranteed to be zero in the log-layer and for higher strain rates.
The definition of the c′1 coefficient now becomes

c′1 = 9
4

[
c1 − 1 + CD max

(
1 + β

eq
1 IIS , 0

)]
(5.6)

where

β
eq
1 = −6

5

Neq

(Neq)2 − 2IIΩ
(5.7)

and

Neq = 9
4
c1. (5.8)

The constant CD can now be estimated by looking at the effective Cµ for zero
strain rates in (5.1). With CD = 2.2 the effective Cµ becomes Ceff

µ = 0.09 which is
close to what one should expect. The a12 anisotropy with the proposed diffusion
model is compared to the basic EARSM in figure 26 for parallel flow (cf. figure 4).
The inclusion of the diffusion model makes the proposed EARSM behave almost
the same as the SST model for this case. In figure 27 we can see an improvement
of the a12 anisotropy prediction near the centre of the channel simulated by Kim
(1989). The actual difference in the predicted mean velocity profile is quite small. This
improvement is similar in character to that obtained by the correction introduced by
Taulbee (1992) although the two approaches are motivated differently.

The derivation of the diffusion correction is based on a number of ad hoc arguments
and should be seen only as a possible extension of the model to flow situations where
diffusion may be of substantial importance.

6. Concluding remarks
For two-dimensional mean flows the new proposed EARSM represents an exact

solution of the implicit ARSM relation for the anisotropy tensor, but also a good
approximation for three-dimensional mean flows. The fact that it fully accounts for
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Figure 27. The a12 anisotropy in channel flow. Comparison of the current EARSM without ( )
and with ( ) diffusion model with the eddy-viscosity model ( ) and DNS data (•) (Kim 1989).

three-dimensional effects gives it a natural predictive capability for complex flows.
This was demonstrated here by capturing the correct trends for axially rotating pipe
flow. Standard two-equation models predict a solid-body rotation with an unaffected
axial velocity profile. In reality the azimuthal velocity has a variation that is close to
parabolic and the rotation causes the axial velocity profile to be less full, i.e. more
parabolic. To capture these features the model description of the inter-component
transfer is crucial. For instance, the simplified linear rapid pressure–strain model of
Launder et al. (1975) and Naot, Shavit & Wolfstein (1973), usually referred to as the
isotropization of production model, does not have the necessary ingredients. The full
linear model, on the other hand, together with linear models for the other terms, was
demonstrated here to be sufficient to capture the main features of the flow in the
axially rotating pipe. In general the predictive capability of the proposed EARSM
for rotating flows is substantially better than standard two-equation models and than
EARSM formulations including only terms up to second order in S and Ω.

The extension to compressible flows is done in a simple way in the present EARSM
in which the equations are expressed by use of Favre averages. Compressibility of the
mean flow is accounted for, but no explicit compressibility corrections are added to the
‘platform’ (K–ε, K–ω . . .) equations. With some minor redefinitions the same ARSM
relation for aij as for incompressible flow could be used also here. This approach
for wall-bounded turbulent flows is adequate for Mach numbers up to about 5. It
was shown to capture the essential features of the complex interaction between an
inclined shock and a turbulent boundary layer at Mach 5. In particular it describes the
skin friction and separation length much better than standard two-equation models.
Compared to the standard two-equation models on which the present EARSM is
based it also gives a substantial improvement for the prediction of the skin friction
variation in incompressible boundary layers with adverse pressure gradient (detailed
results not reported here).

Poor prediction of the effects of rotation and the under-prediction of separation
tendency in adverse pressure gradient boundary layers are well known deficiencies of
closures based on the eddy-viscosity hypothesis. The present EARSM substantially
improves these two aspects, and reduces the need for wall damping. A simple way
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to obtain the correct near-wall limits of the anisotropies was constructed here on the
basis of a van Driest type of damping function. For channel flow this was shown to
give a very accurate description, and a simple method to retain numerical stability for
situations with separated flows was demonstrated. A form of wall damping function
based on Rey ≡

√
Ky/ν was shown to be an attractive alternative to forms based on

y+ in flows with (or near) separation.
The reduced need for wall damping is coupled to the fact that the present EARSM

automatically predicts a production to dissipation ratio with correct asymptotic
behaviour for large strain rates. For instance, in parallel flows this correctly gives an
asymptotically constant shear stress anisotropy component for large strains (shear
rates). This behaviour is not a natural part of eddy-viscosity based models, but was
incorporated in a somewhat ad hoc manner by Menter (1993). In the present model
this behaviour emanates naturally from the underlying modelling of the terms in the
RST equations and the direct solution of the production to dissipation ratio.

To further illustrate the behaviour for large strain rates the proposed model was
tested in homogeneous shear flow at high initial shear rate. The good prediction that
was obtained for this case can, however, be regarded as a bit fortuitous in the light
of the fact that the basic ARSM approximation is somewhat questionable for a case
with a significantly non-zero left-hand side of the aij transport equation (∂aij/∂t 6= 0).
Moreover, the Launder et al. (1975) model does not give accurate predictions of this
case when used in a differential form. It is, however, a fact that the self-consistent
approach (i.e. where the production to dissipation ratio is solved for as part of the
total EARSM-solution) gives a model with the correct asymptotic behaviour, which
is a pre-requisite for reasonable predictions in the limit of high shear. The present
model is not constructed specifically to incorporate such effects. It is, however, an
important step towards a more general engineering model that the model is also able
to give reasonable results in extreme flow cases.

Perhaps the most important feature of the proposed model is the numerical be-
haviour. The computational cost is not significantly increased compared to standard
eddy-viscosity two-equation models and the general numerical behaviour is almost
the same. Implementation of this model into flow solvers with existing eddy-viscosity
two-equation models should not pose major problems. The model may be formulated
in terms of an effective eddy viscosity with an additional correction that may be
treated fully explicitly (see Appendix A).

The authors would like to thank Dr Torbjörn Sjögren and Dr Magnus Hallbäck for
many helpful discussions, especially concerning the treatment of rotating coordinate
systems. The first author would also like to thank Dr Sharath Girimaji for many
helpful discussions, especially concerning non-equilibrium turbulence. The authors
gratefully acknowledge funding of this study from the European Space Agency
within a project for improving the modelling of turbulent flows related to hypersonic
lifting vehicles and would like to acknowledge Dr Ingemar Lindblad for leading this
project.

Appendix A. Summary of the proposed model
The Reynolds stresses may be written in terms of an effective Cµ-coefficient which

is mathematically identical with the formulation in § 2:

uiuj = K( 2
3
δij − 2Ceff

µ Sij + a
(ex)
ij ), (A 1)
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where the effective Cµ-coefficient is

Ceff
µ = − 1

2
f1 (β1 + IIΩβ6) , (A 2)

and the extra anisotropy a(ex)
ij then becomes

a(ex) =
(
1− f2

1

) 3B2 − 4

max
(
IIS , II

eq
S

) + f2
1β3

(
Ω2 − 1

3
IIΩ I

) (
S2 − 1

3
IIS I

)
+

(
f2

1β4 − (1− f2
1

) B2

2 max
(
IIS , II

eq
S

)) (SΩ−ΩS)

+f1β6

(
SΩ2 +Ω2S − IIΩS − 2

3
IV I

)
+ f2

1β9

(
ΩSΩ2 −Ω2SΩ

)
. (A 3)

Here a, S andΩ denote second rank tensors, tr{ } denotes the trace and I is the identity
matrix. The inner product of two matrices is defined as (SS)ij ≡

(
S2
)
ij
≡ SikSkj . The

normalized mean strain and rotation tensors are defined as

Sij =
τ

2

(
Ui,j +Uj,i

)
, Ωij =

τ

2

(
Ui,j −Uj,i

)
, (A 4)

where the turbulent timescale is defined by

τ = max

(
K

ε
, Cτ

√
ν

ε

)
. (A 5)

The invariants are defined by

IIS = tr{S2}, IIΩ = tr{Ω2}, IV = tr{SΩ2}, V = tr{S2Ω2}, (A 6)

and

II
eq
S =

405c2
1

216c1 − 160
. (A 7)

By introducing an effective Cµ-coefficient one can easily introduce this level of
modelling into flow solvers with existing two-equation eddy-viscosity models by
setting

νt = Ceff
µ Kτ. (A 8)

The contribution from the extra anisotropy a(ex)
ij may now be added as fully explicit

additional terms in the equations.

The β-coefficients are given by

β1 = −N
(
2N2 − 7IIΩ

)
Q

, β3 = −12N−1IV

Q
,

β4 = −2
(
N2 − 2IIΩ

)
Q

, β6 = −6N

Q
, β9 =

6

Q
,

 (A 9)

with the denominator

Q = 5
6

(
N2 − 2IIΩ

) (
2N2 − IIΩ) . (A 10)
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For most purposes it is sufficient to take N = Nc where

Nc =


c′1
3

+ (P1 +
√
P2)

1/3 + sign (P1 −
√
P2) | P1 −

√
P2 |1/3, P2 > 0

c′1
3

+ 2
(
P 2

1 − P2

)1/6
cos

(
1

3
arccos

(
P1√

P 2
1 − P2

))
, P2 < 0,

(A 11)

with

P1 =

(
c′21
27

+
9

20
IIS − 2

3
IIΩ

)
c′1, P2 = P 2

1 −
(
c′21
9

+
9

10
IIS +

2

3
IIΩ

)3

(A 12)

and

c′1 = 9
4

(c1 − 1) . (A 13)

An additional term can be added to Nc in order to improve the accuracy for three-
dimensional mean flows (see § 2.2).

The simplifications for two-dimensional mean flow are

β1 = −6

5

Nc

N2
c − 2IIΩ

, β4 = −6

5

1

N2
c − 2IIΩ

, β3 = β6 = β9 = 0. (A 14)

The damping function reads

f1 = 1− exp (−C ′y1

√
Rey − C ′y2Re

2
y), (A 15)

where

Rey =

√
Ky

ν
. (A 16)

Finally, the five model constants are

Cτ = 6.0, c1 = 1.8, B2 = 1.8, C ′y1 =
2.4

26.0
, C ′y2 =

0.003

26.0
. (A 17)

Appendix B. The completeness of the a(S ,Ω) expression with ten terms
Based on the derivations of Spencer & Rivlin (1959) for matrix polynomials Pope

(1975) concluded that there are ten independent terms in the complete expression
a(S ,Ω). One should here restrict the meaning of independence to polynomial indepen-
dence as was also pointed out by Taulbee, Sonnenmeier & Wall (1994). The highest-
order term

(
ΩS2Ω2 −Ω2S2Ω

)
in expression (1.18) is of order 5 and extension 3.

The S and Ω tensors can appear in powers up to 2. A term SmΩn is then said to
be of power m + n and extension 2, etc. Shih & Lumley (1993) (see also Shih 1996)
also include a term of power 6 and extension 4. They use a notation with the mean
velocity gradient tensor and its transpose, but with the present notation such a term
can be written as

SΩ2S2Ω−ΩS2Ω2S − 2
3
VI I , (B 1)

where the invariant VI equals tr{SΩ2S2Ω}. One may first note that the invariant
VI is of third power in Ω, which means that it cannot be expressed in terms of a
polynomial in the other invariants, which are of order zero or two in Ω. Hence, VI
contains sign information that is not contained in the other invariants. We can derive
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the following relation for its square:

VI2 =
II3
Ω

144

(
9IIS

3 + 2III2
S

)
+
II2
Ω

6

(−3VII2
S + IV IIS IIIS

)
+
IIΩ

8

(
10V 2IIS − 4VIV IIIS − IV 2II2

S

)− V 3 + 1
2
VIV 2IIS − 1

3
IV 3IIIS .

In the present modelling the invariant VI will not appear since it would arise from
the product of the highest (fifth-order) term and S , and even in the general solution
(for c2 6= 5

9
) the coefficient β10 = 0.

We can furthermore express the sixth-order term as the following combination of
lower-order terms:

SΩ2S2Ω−ΩS2Ω2S − 2
3
VI I =

(
2
3
V + 1

12
IISIIΩ

)
(SΩ−ΩS)

+ 1
3
IV
(
S2Ω−ΩS2

)− 1
6
IIΩ
(
SΩS2 − S2ΩS

)
+ 1

6
IIS
(
ΩSΩ2 −Ω2SΩ

)
.

By use of the generalized Cayley–Hamilton theorem it is fairly straightforward to
show that no other independent sixth- or higher-order term exists (see e.g. Shih &
Lumley (1993).

Appendix C. Solution of the general quasi-linear ARSM equation
The implicit general quasi-linear ARSM equation is rewritten similarly to the

simplified equation (2.2)

Na = −A1S + (aΩ−Ωa)− A2

(
aS + Sa− 2

3
tr{aS}) , (C 1)

where

N = A3 + A4

P
ε
. (C 2)

The simplified equation is now a special case of (C 1) with the coefficients A1 = 6
5
,

A2 = 0, A3 = c′1 and A4 = 9
4
. For the general case we require that A1, A3 and A4 are

positive.

C.1. Solution for two-dimensional mean flow

The solution for two-dimensional mean flow is

β1 = −A1N

Q
, β2 = 2

A1A2

Q
, β4 = −A1

Q
, (C 3)

where the denominator

Q = N2 − 2IIΩ − 2
3
A2

2IIS . (C 4)

The equation for N is, for two-dimensional mean flow,

N3 − A3N
2 − ((A1A4 + 2

3
A2

2

)
IIS + 2IIΩ

)
N + 2A3

(
1
3
A2

2IIS + IIΩ
)

= 0, (C 5)

with the solution

N =


A3

3
+ (P1 +

√
P2)

1/3 + sign (P1 −
√
P2) | P1 −

√
P2 |1/3, P2 > 0

A3

3
+ 2(P 2

1 − P2)
1/6 cos

(
1

3
arccos

(
P1√

P 2
1 − P2

))
, P2 < 0,

(C 6)
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where

P1 =

(
A2

3

27
+

(
A1A4

6
− 2

9
A2

2

)
IIS − 2

3
IIΩ

)
A3 (C 7)

and

P2 = P 2
1 −

(
A2

3

9
+

(
A1A4

3
+ 2

9
A2

2

)
IIS + 2

3
IIΩ

)3

. (C 8)

Let us investigate whether the denominator in equation (C 4) can become zero.
Equation (C 5) can be rewritten, by using equation (C 4), as

Q (N − A3) = A1A4IISN, (C 9)

which shows that Q > 0 if N > A3. The problem is then to show that N > A3. Let us
first look at the special case when IIS = 0. Equation (C 5) can then be written

(N − A3)
(
N2 − 2IIΩ

)
= 0, (C 10)

with the only real root N = A3. Differentiating equation (C 5) with respect to IIS gives

∂N

∂IIS
=

2
3
A2

2 (N − A3) + A1A4N

3
(
N − 2

3
A3

)
N − (A1A4 + 2

3
A2

2

)
IIS − 2IIΩ

, (C 11)

which is positive if N > A3. When IIS = 0 (C 11) can be written as

∂N

∂IIS

∣∣∣∣
IIS=0

=
A1A3A4

A2
3 − 2IIΩ

> 0. (C 12)

So far we know that N = A3 for IIS = 0 and that N increases until (C 11) changes
sign. By using (C 5) IIΩ can be eliminated in (C 11) which then becomes

∂N

∂IIS
=

2
3
A2

2 (N − A3)
2 + A1A4N (N − A3)

2N (N − A3)
2 + A1A3A4IIS

. (C 13)

From this form it is obvious that the denominator is strictly positive and that
∂N/∂IIS = 0 for IIS = 0 only (where N = A3). Hence, the numerator is strictly
positive and N increases for all IIS , showing that N > A3 for all IIS . The corresponding
relation for the simplified ARSM equation is N > c′1.

The denominator Q is thus always positive which guarantees a non-singular solu-
tion.

C.2. Solution for three-dimensional mean flow

The solution of the linear equation system where N is assumed as known can be
formulated as (see Gatski & Speziale 1993)

Nβλ = −A1δ1λ +
∑
γ

Jλγβγ − A2

∑
γ

Hλγβγ (C 14)

or in the standard form for linear equation systems(
Nδγλ − Jγλ + A2Hγλ

)
βλ = −A1δ1γ (C 15)
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where the matrices are given below for three-dimensional mean flow

H =



0 1
3
IIS − 2

3
IIΩ 0 0 2

3
IV − 1

3
V 0 0 0

2 0 0 0 0 2IIΩ IV 0 0 0

0 0 0 0 0 IIS
1
3
IIIS 0 0 0

0 0 0 0 1
2
IIS 0 0 1

3
IIIS −IV − 1

3
V − 1

6
IISIIΩ

0 0 0 1 0 0 0 0 −IIΩ − 2
3
IV

0 0 1 0 0 0 1
2
IIS 0 0 0

0 0 0 0 0 −1 0 0 0 0

0 0 0 0 −1 0 0 0 0 1
3
IIΩ

0 0 0 0 0 0 0 0 0 − 1
3
IIS

0 0 0 0 0 0 0 0 −2 0



, (C 16)

J =



0 0 0 −IIΩ 0 0 0 2V − IISIIΩ II2
Ω 0

0 0 0 0 −IIΩ 0 0 −2IV 0 II2
Ω

0 0 0 0 −2IIS 0 0 0 −2IV 2IISIIΩ − 2V

1 0 0 0 0 1
2
IIΩ 0 0 0 0

0 1 0 0 0 0 1
2
IIΩ 0 0 0

0 0 0 3 0 0 0 IIS −2IIΩ 0

0 0 0 0 3 0 0 0 0 −2IIΩ

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 −1 0 0 0 0

0 0 0 0 0 0 −1 0 0 0



.

(C 17)

The solution for three-dimensional mean flow is

β1 = − 1
2
A1N

(
30A2IV − 21NIIΩ − 2A3

2IIIS + 6N3 − 3A2
2IISN

)
/Q,

β2 = −A1A2

(
6A2IV + 12NIIΩ + 2A3

2IIIS − 6N3 + 3A2
2IISN

)
/Q,

β3 = −3A1

(
2A2

2IIIS + 3NA2IIS + 6IV
)
/Q,

β4 = −A1

(
2A3

2IIIS + 3A2
2NIIS + 6A2IV − 6NIIΩ + 3N3

)
/Q,

β5 = 9A1A2N
2/Q, β6 = −9A1N

2/Q, β7 = 18A1A2N/Q,

β8 = 9A1A
2
2N/Q, β9 = 9A1N/Q, β10 = 0,


(C 18)

with the denominator

Q = 3N5 +
(− 15

2
IIΩ − 7

2
A2

2 IIS
)
N3 + ( 21A2 IV − A3

2 IIIS )N2

+( 3 II2
Ω − 8 IIS IIΩ A

2
2 + 24A2

2 V + A4
2 II

2
S )N + 2

3
A5

2 IIS IIIS
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+2A3
2 IV IIS − 2A3

2 IIΩ IIIS − 6 IV A2 IIΩ. (C 19)

By substituting N = 1, A1 = 1 and A2 = 1 one gets the same ARSM equation as
Gatski & Speziale (1993) and also an identical solution.

The equation for N can also be derived for three-dimensional mean flow and
is a sixth- order polynomial equation, as for the simplified case. The expression
is, however, complicated and of small practical interest. As for the solution of the
simplified ARSM equation, the two-dimensional solution of N can also be used here
as a first approximation.
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